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Abstract 

A manufacturing cell is a complex collection of machines and electronics which must be intelligently 
supervised. It should be flexible enough to readily adapt to different part styles and robust enough to operate 
without human assistance for reasonable periods of time. A programming language with a correct choice of 
language properties can make meeting these demands and others like them a manageable programming task. 

A rule based language in conjunction with a set of grammatical constraints supervises a cell which 
manufactures turbine blade pre-forms. The non-procedural nature of the language provides considerable 
flexibility in the operation of the cell. The rules are executed in no particular sequence, but rather as the cell 
is ready for them. Unfortunately, the non-procedural approach allows for unplanned interactions between 
rules. Most of these interactions' can be avoided by defining which rules can operate concurrently. The 
language is logically linked to the pre-form cell through a simple database management system. The database 
system maintains a model of the cell used by the language interpreter to decide which rules to execute. This 
database system also protects the cell programmer from the low level programming details (e.g., 
communication protocols). 
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1. Introduction 
A manufacturing cell is a logical unit of machine tools combined to increase their utility. Justification of 

this cellular approach is provided by the speeded flow of parts, inventory control, reduction of labor costs, 
and the reduction of change-over time from one pan style to another [2]. The coordination of the machine 
tools within the cell requires a sophisticated supervisory program managing each of the machine tools both 
alone and together. This involves , for example, the cold start of each machine tool, externally triggering its 
primitive programs, monitoring error states, and scheduling preventive maintenance. A sophisticated 
supervisory program will operate the cell unattended. 

Manufacturing cells do not comfortably fit within the traditional classifications of computer controlled 
machine tools, e.g.. Computer Numerical Control (CNC) and Direct Numerical Control (DNC). The 
tendency in industry is to describe CNC as using a dedicated computer to control a machine tool and DNC as 
using a computer to distribute part programs to remote NC tools [5]. These definitions do not accurately 
describe the functionality of a flexible manufacturing cell, though some researchers extend the definition of a 
DNC controller. 

A supervisory computer could operate the machine tools in a fixed sequence much as a NC machine tool 
operates. However, a multi-million dollar unmanned manufacturing cell must be managed radier than just 
operated. A cell management svstem sends its commands to the machine tools as each tool is ready rather 
than forcing a fixed and unalterable sequence on the entire cell (i.e., scheduling). It monitors the progress of 
the cell and either performs or schedules maintenance operations as they arc required. It furthermore acts as 
an interface between the working machines and the high level factory operations (e.g., part design and 
purchasing ). The final supervisory program is written in a rule based language whose run time system takes 
on the management responsibilities of the cell. 

The evolution of programs designed for cell supervision is benchmarked by work such as that of 
Popplestone [8], Week [11], and McDonnell-Douglas [6] . These approaches to cell supervision have been 
based on procedural languages like FORTRAN, Pascal, APT (Automatic Programmed Tool), or a 
modification of these. Popplestone and McDonnell-Douglas based their work on a superset of APT (Robot 
APT and MCL, respectively). Week's work was done in a combination of FORTRAN and CAMAC 
(hardware and software protocols for low level communication). 

Procedural languages have been designed around a Von Neumann computer architecture which has a 
single processor and a single memory store. This architecture sets up a bottleneck in the flow of instructions 
[1], because each instruction is expected to go through the processor in turn. A procedural language design, 
and a single processor computer architecture arc not appropriate for the tasks of a cell management system. 
Each machine tool is equipped with its own controller which manages the machine in real time. These 
controllers are in turn linked to a central processor. A non-procedural language describes an algorithm in 

I such a way as to make the order of program statements unimportant. In fact, the statements are executed as 
some goal process needs to invoke them, such as keeping all of the machine tools busy. In the case of a 
manufacturing cell, the instructions take a long time to execute because they represent physical actions. 
Therefore, a non-procedural interpreter is able to direct a flow of high-level instructions to each controller as 
they arc needed. The discrepancy in time, between computational and physical actions, avoids the botdeneck 
in the central computer. 

S 
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A rule based language is essentially a set of conditionals which can be treated non-procedurally.   The 

condition amounts to the pre-conditions for executing a particular cell instruction (e.g., "is the furnace door 
open? -> then get part"). This implies that the supervisory program is able to sequence the events within the 

r cell even though the events do not occur in a rigid order. An interrupt driven system is also non-procedural in 
nature, but it obscures the conditions of execution making the final system difficult to understand. 

A formal deductive system is the primary example of a non-procedural language.  The order in which 
theorems arc proved has no effect on the set of provable sentences. That is, there arc no relevant siclc effects 

(I in the the course of a proof which impinge on the system as a whole. Unfortunately, systems which have not 
been adequately formalized are characterized by many unsuspected side effects. These side effects are 
manifested by rules which interact because of their interdependence. Two robots could be put in a collision 
course under one ordering and affect useful work under another. A set of grammatical constraints is 
proposed which filters out rules that have undesirable side effects in a particular context i 

Our research is directed at the theoretical aspects of language design as well as the practical matters which 
are involved in implementing a cell.   The cell is currently being installed at the Wcstinghouse Electric 
Corporation. Turbine Components Plant in Winston-Salcm, North Carolina.  It will produce steam turbine 
blade pre-forms from billets (cylindrical metal stock). The major mechanical process in the cell is open-die 

'•f forging which operates on billets that are in excess of 2000° F. The cell contains an industrial rotary furnace, 
two materials handling robots, an open-die forge , a vision based loading station for acquisition of the billets 
and a vision based gaging station for inspection of the forged prc-forms. The goal of the language 
development is to provide a system capable of autonomously supervising the cell operation for a reasonable 
period of time, e.g., a weekend. 

X 

B 

. 

There must be a logical connection between physical machines in this pre-form cell and the words in the 
language. That is, the terms in the language must be meaningful to the supervisory program. A simple 
database management system makes this association between words and salient cell features. The features are 
contained in a highly structured database and arc used to model the cell at a particular time. Whenever the 
language interpreter accesses the database through the management system some of the cell features are 
updated. 

The rest of this paper is divided into two major parts. The first part defines a language which is based 
around a set of formal properties which arc useful for cell programming. These properties guide the language 
definition through the sub-sections. And the final part of the paper clarifies the connection between the 
characteristic language properties and our particular manufacturing application. 

2. Language: Demands and Suggestions 

2.1. The Language Task 
A complex manufacturing cell is composed of many computer controlled tools. These may include robotic 

arms and machining equipment or sophisticated sensors such as vision systems. The best return on capital 
investment for this expensive equipment is realized by optimi/ing the mean throughput time. It is not 
important to s;ive milli-scconds by optimi/ing the moves of the robots, but it is critical to maintain the flow of 
the parts within the cell and prevent untoward shut-downs of the cell due to equipment failures such as dirty 

taM 
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oil filters. "ITic cell is to be unmanned and shoulu be capable of preventing hardware failures by automitically 
scheduling tasks for preventive maintenance. This is achieved by placing sensors on ihc mcclu*ucal 
hardware, by providing the means to convert the sensor information into sensible numbers and by having a 
priori knowledge of when the hardware is likely to fail. 

Another means of optimizing throughput involves the ability to easily decompose a program into parallel 
sections that can execute independently. Each machine tool typically takes several minutes to perform a 
single operation making parallel execution of independent operations important. 

The resulting program is complex and needs to be easy to update. A program is modified when new part 
styles arc manufactured and when the cell itself is altered as in the addition of new machine tools. One way to 
manage the complexity of the program is to structure it in a way that it can be understood at different levels of 
detail. And. of course, the final program should be if at all possible error free. 

In order to achieve these demands the language must possess a number of formal properties which make 
the problems inherently manageable. Our language design is based on such a set of formal properties which 
can be justified independently of the particular language. We feel that the point here is not to design a new 
language which is meant to be every programmer's panacea, but rather to encapsulate a special set of language 
properties under one framework. 

< 

2.2. The Program Forms 
A manufacturing cell is usually made up of a set of machine tools each of which has many functions and 

error states. By establishing the pre-conditions of each machine function, it is possible to execute program 
segments as they are needed rather than as they appear in the procedural flow. In addition, most machine 
error states are paired with a suggested course of action. Both of these basic requirements call for a non- 
procedural rule based language. This programming paradigm has been extensively studied under the guise of 
production systems and has been reviewed by Waterman and Hayes-Roth [10]. 

The general form of a program and its statements is a conditional. 

i 

(antecedent) —• {consequent} 

The left hand side is evaluated as a boolean expression, and if TRUF then the right hand side is executed as a 
set of sequential actions. An example program segment which commands a robot to place a work piece 
(Billet) in a furnace could be written in the following way. 

« 
(And (Hold Billet) 

(Open Door) 
(Vacant Space)) 

{(Move Robot Door) 
(Move Robot Furnace) 
(Place Billet) 
(Move Robot Door) 
(Close Door)} 

The convention used here is that the first clement' of a list on the left hand side of a rule is a truth predicate 

nhc convention of putting a function first in a list is compatible wuh the f JSP programming language. 
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and the first element of a list on the right hand side is a command function.3 For example, the truth predicate 
Hold is TRUE if and only if the robot is actually holding a Billet. 

c 
2.3. Levels of Abstraction 

Structuring a program hierarchically has many different advantages. The entire program can be seen and 
understood at a glance even though it may be at a coarse level of abstraction. This convenience is available to 
everyone who needs to look at the program, including the shop foreman, the programmer, and even the 

• computer doing the execution. Finer levels of abstraction provide more and more details about particular 
aspects of the manufacturing cell. This makes it both easy to find details in an existing programs and to add 
new rules without disturbing an existing program's internal structure. 

In keeping with die program forms discussed previously each program is made up of a single conditional: 
• the root of the program. 

(Active Cell) -+ {consequent} 

y The consequent in turn can be a set of conditionals or a set of basic actions. This rule makes it possible to 
turn the whole cell on or off by making the boolean Active of Cell TRUE or FALSE respectively. 

C 

The next level of abstraction naturally falls into the different modes of operation for the cell. These modes 
of operation might include: cold starting the cell, scheduling preventive maintenance and the basic execution 
cycle of the machines. The final levels make up the actual cell control, and its verificational sequence. 

('cell Status^) 

< MdL )  < Batch Run )      ( 2X••» ) 

("Machine Operations^) 

C Status Verification   J) 

Figure 2-1:   Illustrating a cell control hierarchy 

The notation for implication (i c. "—»") is only used to hifhlifht the difference between the left and nuhl hand sides of a rule.  It 
could just as easily be written as a function found first in ihc list (i c., "(if (antecedent) {consequent})") 
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2.4. Language Primitives and the Definition of Truth 
The language primitives correspond to primitive cell functions and suites. The primitive cell functions arc 

each a set or" non-decomposable machine actions which return TRUE upon successfully completing the task 
and FAI.SH otherwise. The machine states can also be viewed as a function which declares that the machine 
is in a particular state. If die machine is already in the correct state then TRUE is returned and FALSE 
otherwise. These simple definitions constitute the basic semantics of the language. 

The cell primitives are a set of functions from which complex programs can be built- Two example 
primitives would be a robot move command and a particular machine location. If the machine position 
changes,4 then the only change that has to be made to die language is to the semantical definition of the term, 
and not to the program itself. 

A cell primitive has several important characteristics. 

• A primitive is a simple function which never needs to be decomposed further within a particular 
manufacturing cell. 

• A primitive is useful and therefore used in complex configurations. In other words, a 
manufacturing cell for making turbine blades would not have a primitive which returns the 
current phase of the moon. 

• A minor change in a primitive does not disrupt the portions of the supervisory program which use 
it. 

• The details of how a primidve accomplishes its task are not needed by the supervisory program. 

• The implementation of the primitive is confined to one machine within the cell. This corresponds 
to a practical restriction which forces the real time control of a machine to be contained within its 
own controller. 

None of these characterizations of a primitive are necessary and in fact arc only used as guidelines to the 
overall system design. A sample set of primitives is given for the open-die forging cell in Section 3. 

2.5. Program Decomposability 

Decomposing programs into independent segments is an extraordinarily difficult problem for programs 
which arc written in an ordinary procedural language. However, programs written in a rule based language 
arc claimed to be made of independent chunks which can be executed in any context. That is. they are 
already decomposed into independent pieces. ITiis is a very strong condition, because it is so difficult to 
guarantee that a rule's execution has no side effects to the surrounding environment. This problem is 
especially acute in physical systems such as a manufacturing cell where some side effects may not have been 
taken into account within die model of die cell. This incompleteness is generally due to die programmer's 
ignorance of subtle itcractions between machine tools. The effect of interactions between rules has also been 
observed by other researchers [7]. 

4 
Only static locations would be made primitive   lor example, the position of a furnace door would be primitive, and us position could 

be changed only after a major construction project 
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2.6. Error Detection: Pragmatics to Semantics to Syntax 
A programming error in a manufacturing cell easily could cause a several hundred thousand dollar 

accident. A iOO-lb. work piece could be dropped on a laser etching device or a furnace could fail to open its 
door before a robot tries to enter it. There arc many different kinds of errors that amount to a 
miscommun'ration between the machine and the programmer. That is, the piogrammcr docs not always say 
what he means. Many of these errors can never be detected, but many of the outlandish errors can be 
detected and then avoided using linguistic techniques. 

Program errors can be found using a range of different language mechanisms. At one extreme you can sit 
back and wait, and watch the machines crash into one another. This is a pragmatic approach. It is an effective 
but expensive means of error detection. A more reasonable approach would be to simulate die program using 
a computer model (i.e., semantics) of the physical machines in the cell. The program execution would then 
cause the model to go through its paces. For example, two polygons intersecting might indicate that if this 
program were to run using real robots, then they would collide. Barry Soroka at Stanford has recently used 
this approach to help him debug robot programs [9]. Unfortunately, an accurate simulation is 
computationally expensive and is only as reliable as the model is accurate. It should be pointed out that a 
purely graphic simulation does not offer ANY error detection facilities per se, but rather is only a tool for the 
programmer to see his own errors. It is certainly possible to extend the simulation to include geometrical 
constraints that prohibit graphical primitives from intersecting, but this is at best a first cut at the possible 
errors since it says nothing about a robot which needs to instantaneously stop. It would then be possible to 
add deceleration constraints to all the robot movements, but then this list of constraints can be extended ad 
injlniium. In fact, the general notion of constraints can be extracted and used to modify the basic syntax of 
the final programming language. This is the final step in the continuum of solutions. More elaborately, 
programs that would cause machine collisions with an unconstrained language would be meaningless and 
would therefore never get to the execution phase. The syntactic approach to error detection has two 
advantages over the more traditional means of simulation. It provides a more streamlined means of encoding 
the real world constraints, and it directly prohibits a programmer from writing the programs in the first place. 

The real world constraints of a manufacturing cell can be embedded in the grammar of a language. For the 
moment, consider a manufacturing cell with a single robot. Such a cell has many of the complications that are 
found in cells containing 15 machine tools. The most obvious commands for a robot include a move 
instruction that is constrained by the physical capability of the robot, at least in terms of position and speed. 

. (Move x y z speed) 

One sure way to avoid problems is to make the robot movements primitive, so that the robot arm always is 
accelerated and decelerated properly. This is in opposition to making both positive and negative acceleration 
primitive.   Unfortunately this is no solution at all, since when the rule of making programs primitive is 

I applied ubiquitously, it trivializes the idea of having a language.   The entire cell program is made into one 
huge primitive. The alternative is to find rules which allow robot primitives to be combined in complex ways, 
while avoiding die disastrous combinations exemplified by robot collisions. 



-: :—•.   - '.-. .*•    ••    •- rrt—«- ---.-- :--v^vn 

2.6.1. The Conflict Set 
Ac each level of the hierarchy at a particular time there is a set of satisfiable rules; the set of rules whose 

antecedents arc TRUE. This set is called tJic conflict set. The name originated on a sequential machine where 
it was necessary to choose which rule could be executed first. In this case each rule is sent to a physically 
different machine, so die rules can be executed in parallel. 

Conflict 
Set 

A.   Executable 

V Rules 

v-~ Satisfaction 
C__Gra Grammatical 

Constraints 

Figure 2-2:  Rule Database and the Conflict Set 

2.6.2. Some Constraints 
Grammatical constraints are used to restrict some rules in the conflict set from being executed. These 

constraints examine the right hand sides of the conflict set rules and determine which predicate argument sets 
are incompatible. The rules passing this examination are executed whilc-thosc rejected are deleted from the 
conflict set One simple constraint prohibits the host computer from sending more than one set of 
instructions to a particular controller. 

A -* {(Robot-l-grippcr open)} 
B -*• {(Robot-1 grippcr closed)} 

In this example only one of the rules would send its command to the the Robot-1-gripper controller. 

Figures 2-3 and 2-4 show two robots that can reach into each other's range. The next constraint restrains 
the two robots from working in the critical region at the same time. 

A —{(Robot-t-moveD)} 
B -» {(Robot-2-movc d)} 

The grammatical constraint must take several factors into account in order to determine that these rules are 
incompatible. Each of the discrete points {C,c,d} should be marked as being part of the critical region. 
Therefore, this constraint prevents both of the robots from going through the critical region in the same 
system cycle. One approach is to encode the robot movement points in such a way that movements can be 
defined in terms of intervals. For example, a lettering scheme makes it possible to represent a movement 
from point A to point D as the closed interval [A l)j, which implies dial the points \\ and C arc included 
within the interval. This suggestion makes it possible to test the constraint relation with a subset operation. 
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IF Robot-interval-1 D Critical-set and 
Robot-interval-2 D Critical-set 
THEN constrain a rule 

Several interesting problems arise when a robot can take two paths to a particular point. One path could be 
short and intersect with the critical region and another path could take the long way around. The system must 
then decide whether it is worth waiting for a path through the critical region or whether it should just take the 
alternate route. Fortunately, it is still easy to represent the circular nature of a robot movement in an interval 
notation by reversing the arguments (e.g., [D A]). 

• 

Critical 
Region 

s 
Figure 2-3:  Two robots contending for the same space 

The tailed robots in Figure 2-4 represent a difficult class of problems, because they strike at the heart of the 
inadequacy of abstract models. Moving the robot from point A to point B seems to be a perfectly reasonable 
action for the head of the robot, while the move has disastrous effects on the tail. While the tail can be dealt 
with in the same way and in conjunction with the head, sooner or later something will be left out of the 
model. A hydraulic hose may extend into the critical region in some robot positions and not in others. 
Perhaps a more convincing example of this dilemma is a robot moving different size parts. This actually 
changes the size and shape of the critical region and depends on how the robot is holding the piece. 

2.6.3. Warnings 
The constraints arc making up for programs that arc incompletely specified. For example, the ordering of 

program statements is intentionally left open until run time. This incompleteness is the source of some 
trepidation. 

If the conflict set ever became too large, it would be time consuming to check all of the combinations that 

A non-nil intersection is intended to return TRUE 
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Figure 2-4:  Robots with tails 

would be called for by the constraints. This would only become a problem in an large manufacturing cell, 
because the conflict set size is bounded by the number of controllers. This may become a determining factor 
in drawing cell boundaries. 

A Rile may be continually thrown out of contention based on the constraints alone. There are two possible 
resolutions to this problem. First, the rule may be naturally executed as the competing rule completes its 
activities. And second, this could be directly prohibited by the system forcing the rules to alternate. 

Constraints not only have to consider conflicting rules, but they must consider the current state of the cell. 
This problem is brought on by the hierarchical rule structure which by changing the cell at one level could 
cause undetectable errors at another level. The constraints must be given access to the database in order for 
them to make the appropriate checks between the rules and the cell state. The only other option would be to 
save an entire list of executed statements and to recalculate the cell state. Since this option is absurd, the 
purity of the grammatical constraints must be violated by giving them semantical access. 

The system may reach a state of deadlock. That is, where there arc no satisfiablc rules left to execute 
because of resource contention. Consider a robot which is waiting for another robot to get out of its way. The 
state of deadlock occurs when the second robot is also waiting for the first robot to get out of its way. This 
assumes that they arc clever enough not to run into each other in the first place. The problem occurs in 
essentially every kind of operating system and has never been solved to anyone's real satisfaction. Two 
approaches have been to avoid the problem through the use of semaphores, and to pre-empt one device in 
favor of another once the state of deadlock has been detected. Viewing physical space as a resource, it is 
possible to assign semaphores to the critical regions. The semaphores represent semantical access for the 
grammatical constraints and thus address the robot deadlock problem. 

' 

*iL±~ 

A systematic approach is being developed to detect and resolve each of these problems. However, these 
solutions will only emerge after extensive research and an enormous amount of experience has been gained 
with an implemented system. 'Ihc implementation, and its relationship with the rule based language arc the 
focus of the next section. 
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3. The Manufacturing Cell: System Architecture 

:c 3.1. Cell Language Function and Structure 
This language is implemented for a cell producing turbine blade prc-forms. The production of these 

prc-forms is the first step in the production of one family of turbine blades which are used in steam turbines. 
Pre-forms are produced by open-die forging of cylindrical billets. Additionally, the cell heats the billet, crops 
the pre-form and stamps the pre-form with appropriate model and batch numbers. Finally, the pre-forms are 
gauged using a computer based vision system. Both the billets and prc-forms arc handled by two large robots. 
The parts flow from the loading racks to the furnace, through the forging machine, to the cropping/gauging 
station and finally to a pre-form bin. Figure 3-1 shows the circular nature of this material flow. 

^ 

ß 

m 

pre-form 
bins 

vision gaging station 

loading racks 

Figure 3*1:  Plan view of the Manufacturing Cell 

The program structure and its rules are mirrored in the physical construction of the cell. The top levels of 
the hierarchy control the management functions of the cell and the lower levels describe the interactions 
between the rules and the equipment. Figure 3-2 illustrates this linkage. 

The rules interact with the physical cell by determining the truth value of antecedents and executing cell 
primitives. This interaction is through a database, as is generally die case with production systems [4]. The 
database manager, in part, provides the truth content of any particular antecedent or consequence to the 
language interpreter (including the highest level rule -- active cell). The database thus acts as the interface 
between die rule based language and the physical cell. 

• 
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Figure 3-2:  A diagram of the control flow within the cell. 

The levels below the database consist of the machine controllers and the machine tools. This language 
views the controllers and equipment as logically one. This allows the supervisor to ask a controller to execute 
a program, but does not burden the SUQCrvisor with the details of controller operation. The fact that the 
controller did, or did not, execute the program is all that is relevant to the supervisor. Additional information 
is valuable for fault tolerance and maintenance, but supervision is achieved by viewing the controller and 
equipment as one logical unit 

Inter-machine communication within the cell is handled exclusively through the supervisory host. This 
includes both the cold-start of the manufacturing cell and the machine tool interaction during cell operation. 
During a cold-start the operating systems and the parts programs for each controller originate from the plant 
computer and arc distributed by the host. Communication between operating machine tools frequently 
occurs during cell operation. For example, the communication between the robot and the forge is passed 
through the host. When the robot passes a billet to the forge, it must ask the forge, via the host, to close its 
chuck jaws. 

Language status and maintenance operations interact with the database to provide cell operating 
parameters to the supervisor. The status operations arc classified as providing information about parameters 
where the supervisor can have immediate consequence. For example, the robot grippcrs arc equipped with 
strain gauges to indicate if a billet has been successfully acquired. Checking those strain gauges indicates to 
the supervisor the success of the acquisition and either fires a rule for corrective action or allows continued 
normal execution. In the same vein, the supervisor will have access to information concerning the status of 
the furnace atmosphere. If the atmosphere goes out of tolerance, a rule will be fired to correct it- 

Mnintcn.-incc operations are rules generally designed to provide information for fault correction and for the 
scheduling ot preventative maintenance tasks. Typically die supervisor docs not have immediate control over 
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the information provided by the maintenance rules. The robot servicing the furnace, for instance, should not 
shut down duo to a filter clog with its cnd-cffcctcr within the furnace. The supervisor can only prevent Ulis 
from happening, however, by indicating that the filter should be replaced. The longer time response for 
correction of a problem indicated by a given maintenance rule suggests that they can be separated from the 
other rules within the language. In this way the maintenance rules generating a list of equipment needing 
service can be fired when the supervisor has time. 

5 3.2. Cell Equipment: Machines and Controllers 
The cell is programmed by creating sub-programs in each machine controller. The set of sub-programs 

within the controller constitute the possible actions of the machine tool for a given turbine blade batch run. 
The sub-programs also constitute many of the primitives of the cell language; the sub-programs arc primitives 
for the supervisor. The primitives, as discussed above, are executed when a rule fires within the cell program. 
Thus the machine controllers must be capable of executing an internal program upon command from the cell 
supervisor. The cold start condition of the cell requires the cell host to pass parts programs to the machine 
tools, so they must have the capability of receiving previously written programs from the cell host. 

To maintain an accurate correspondence between the supervisor model and the physical condition of the 
cell the supervisor must have access to timely information on the cell operating status. Items such as the 
current program any one machine is running and the exit status of the last program a tool ran are important 
The progression of supervisor complexity toward autonomous operation for an extended period of time 
requires a more encompassing model. This»modcl, in turn, requires more information from the cell. One of 
the most interesting uses for this additional input is the detection of faults within the manufacturing process 
by visually inspecting the finished pre-form [3]. The visual inspection is being done by equipment identical to 
that doing the billet location for the initial part acquisition. 

The constraints of the controllers have important consequences for the language. The host computer 
initiates all communication between a tool and itself. The available controller designs, however, allow them to 
acknowledge messages only when they are ready. The robot controllers, for example, are essentially 
completely busy during robot translation. Only between the execution of sub-programs do they have time to 
correspond with the supervisor. This restricts the supervisor from terminating running sub-programs. 

3.3. Language Database 
The database system is the interface between the supervisor and the machine controllers. The information 

within the database is used to pass and obtain operating parameters to and from the machine tools. A 
software interface driver is implemented to execute this communication. The driver understands the protocol 
for the communication between the host and the machine tool while the database supplies the driver with the 
appropriate parameters for the task at hand. The database is constructed to provide a consistent format for 
those parameters. The cell has a large number of inputs to the supervisor, but these tend to be cither linear 
functions of die physical variable or simple binary inputs. This has allowed us to construct die database 
around an clement which varies from zero to one. This element represents, in a uniform manner, the value of 
any of die inputs from the cell. Previously known minimum and maximum values arc included in the 
database as parameters to a normalization routine. 'ITic fundamental idea here is the ability to represent a 
varied and complex set of inputs as a uniform set of values. This internal value can then be easily translated 
to numbers appropriate for cither an operator or a machine tool. 

I 
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The database uses abstract data tvpes which include both the data and the functions needed to model the 
equipment. An entry in the database will typically include the following classes of information considering 
the furnace as an example: 

• The logical name of a software driver which understands the protocol for communication between 
the host and the machine controller6. 

• The normalized value of the state. This value will reflect the last sampled value of the state 
normalized to a range between zero (0) and one (1). An executing ailc will cause a new value to 
be sent to the machine tool. The values in the database are then updated from the new machine 
tool state. 

• The maximum and minimum values of the state as viewed by the program rules. These are 
numbers representing the values of the state as understood by the programmer, eg., furnace 

M temperature in degrees Fahrenheit. 

• The maximum and minimum values of the state as viewed by the machine controller. These 
values are related to the hardware on the controller, e.g. furnace temperature represented by a 
number between 0 and 4095 for a hardware device such as a 12-bit D/A converter. 

• The memory location within the remote controller from which the device is controlled. 

• A number indicating how-quickly the machine state changes. This information is used in deciding 
how frequently the state needs to be updated. The furnace temperature changes rather slowly 
with respect to the angular positioa.of the furnace hearth. Therefore, the hearth position will be 
updated more frequently than the furnace temperature. 

To capitalize on the advantages discussed above, this database structure will also be used for the other 
controller entries. The number representing the memory location within the remote controller will point to, 
for example, an executable robot sub-program. The robot will return a truth value (true for successful 
completion of the task and false otherwise) when the sub-program completes. This truth value will be placed 
in the state value. 

Figure 3-3 shows an example of the interaction which takes place between the language interpreter and the 
equipment database. In this example the interpreter operates on a rule which opens the furnace door if the 
door is closed. The database manager (called "Get Truth" here) ascertains the truth content of a rule's 
antecedent. If true, the interpreter sends the consequence to the database manager and it is executed. The 
equipment database contains: 

• the "name" of the furnace driver 

• a normalized value of the door >tatc (in this case, cither opened or closed) 

• minimum and maximum values (all of which arc zero or one for this binary system) 

Tlic logical name is connected to the address of ihc driver. 

- 
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Figure 3-3: -An example of interaction between the 
language interpreter and the equipment database. 

• the memory location within the furnace controller that controls the furnace door. 

The other entry in figure 3-3 is a representative entry for the furnace temperature control. 

This portion of the database will also contain two other entries for registers showing the actual state of the 
door . The combination of these two entries provide the supervisor with three possibilities of furnace door 
positions: open, closed or indeterminate. The indeterminate state is composed of two states, 'door neither 
open or closed' and 'door both open and closed." The latter is a serious error, representing a failure in the cell. 

The primary non-transportability of the system rests in the entries of the database. This implies that the 
movement of the supervisor to a different manufacturing cell would primarily require re-writing the database. 
By die same token, the majority of the work involved in adding a new machine tool to an existing cell is 
adding new entries to the database. 

I 

7. 
The door open and door closed stales arc registered by limit switches on the furnace. 
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3.4. Rule Execution Example 
A brief illustration of rule execution should help clarify how a. program is written and executed. This 

example is concerned with a set of ailcs supervising a robot moving cold billets from the loading rack to the 
furnace. For simplicity, there arc two 'staging' areas in this transfer. One is in front of the furnace and one in 
front of one of the loading racks. The staging areas arc. in a significant sense, safe locations for the robots: 
thoy arc not in any of the critical regions of the cell nor do they place any portion of the robot in a critical 
re :ion. The robot in this example starts at the furnace staging area which is an endpoint of one of the robot 
primitives. 

(AND     (Acquired Billet InRack) 
(NOT(Locatcd Billet InRack))) 

{   (Locate Billet InRack) } 

a 
(AND     (At Robot LoadStage) 

(Located Billet InRack) 
(NOT(Gripped Billet))) 

{   (Pass Rack BilletLocation ToRobot) 
(Acquire Billet InRack)} 

• (AND     (At Robot LoadStage) 
(Gripped Billet)) 

{   (Move Robot ToFurnaceStage)} 

(AND    (Gripped Billet) 
(Cold Billet) 
(At Robot FurnaceStage) 
(NOT(Moving FurnaccHearth))) 

{   (Open FurnaceDoor) 
(Pass Furnace BilletLocation ToRobot) 
(Place Billet InFurnace) 
(Close FurnaceDoor)} 

(AND     (At Robot FurnaceStage) 
(NOT(Gripped Billet)) 
(NOT(Full Furnace))) 

-*     {   (Move Robot ToLoadStage)} 

The syntax of the rules is described in Section 2.2. To fully understand this example, a few comments on 
the semantics of the functions arc noted. 

• Tenses arc used to distinguish between boolean functions and imperative functions. For example, 
(Acquired Billet InRack) is a boolean function which returns TRUE if and only if a billet has 
already been acquired. This is distinguished from (Acquire Billet InRack) which commands the 
robot to acquire a billet. 

• Acquire and Place implicitly refer to robot sub-programs. Their arguments specify to the DBM 
(Data Base Manager) which sub-program should be executed by the robot 

• The Locate function in rule A tells the vision system to locate a billet in the loading rack. 
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• Pass explicitly "passes' a value from one machine controller to another. For example, (Pass Rack 
Billet Location ToRobot) passes the billet location which is found by the \ision controller to the 
robot controller. 

• At is a boolean function with two arguments. The first argument is a machine at the position of 
the second argument. 

A trace of the execution might appear as follows. 

• The language interpreter acting with the DBM determines that the rules A and E can be passed to 
the conflict set The constraints will not reject these rules, so they arc passed to the DBM for 
execution. The DBM will tell the vision system to execute its billet location primitive which 
returns the billet location. It will also instruct the robot controller to execute a sub-program that 
moves the robot to the loading rack staging area. The two separate consequences can execute 
simultaneously. 

• The next pass of the interpreter discovers that no rules can be passed to the conflict set. This will 
continue to be the case until the consequences of rules A and E have completed execution. At this 
time, the interpreter will discover that rule B can be executed. B instructs the robot to acquire a 
billet from the loading rack. The (Acquire Billet InRack) consequence in rule B is a robot 
primitive which 

o moves the robot from the staging area to a location over the billet 

o lowers the grippcr to the height of the billet 

o closes the gripper 

o raises the gripper 

o and returns the robot to the staging area following a pre-programmed path such that the 
billet does not contact the loading rack. 

• After the consequence of aile B has completed, the interpreter passes the rules A and C to the 
conflict set. Again, the constraints will not reject cither of these rules. 

• At the completion of C. it is possible to execute D. Rule E is rejected by the interpreter because 
the gripper docs contain a billet. If the programmer had forgotten the first consequence in rule D, 
the constraints would have rejected D from the conflict set, because execution of 1) would have 
placed both the furnace door and the robot arm in the critical region of the door. •'• 

• Finally, E can again be fired to move the robot to the loading rack staging area. 

4. Summary 
Ihc manufacturing cell of the future is the basic unit of a flexible factory. If a cell is expected to do a wide 

range of tasks, then there must be a straightforward way of repiogramming it. This involves a programming 
language which encapsulates a set of properties that makes the programming task easy and which helps the 
programmer avoid costly errors. The same requirements would be found in a more sophisticated CAD/CAM 
system where the program would be automatically constructed from a part design. 

M 
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A non-proccdural language has been chosen as the most likely candidate for cell control. Unfortunately, 
lite very advantages of this scheme, its non-scquenüal nature, also arc the cause of its biggest problems. 
Unwanted interactions between program statements could be translated into actual robot collisions which 
must be avoided. Therefore, grammatical constraints have been added to choose which rules in the conflict 
set can be simultaneously executed. The implemented manufacturing cell will provide us with a unique 
opportunity for developing new and more powerful constraints which in die long term will support a more 
basic theory of language development. 
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